Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[6-(4-Bromophenyl)-2,2'-bipyridine- $\kappa^2 N, N'$]bis(triphenylphosphane- κP)-copper(I) tetrafluoridoborate

Yan-Ru Lin, Jun-Sheng Huang and Ming-Hua Zhong*

Department of Chemistry, Hanshan Normal University, Chaozhou 521041, People's Republic of China

Correspondence e-mail: hszhongmh@126.com

Received 19 June 2011; accepted 21 July 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.014 Å; R factor = 0.056; wR factor = 0.142; data-to-parameter ratio = 11.5.

The title compound, $[Cu(C_{16}H_{11}BrN_2)(C_{18}H_{15}P)_2]BF_4$, is composed of one Cu^I atom, one 6-(4-bromophenyl)-2,2'bipyridine (*L*) ligand, two triphenylphosphane molecules and one tetrafluoridoborate anion. The Cu^I ion is four-coordinated in a distorted tetrahedral configuration by two N atoms from *L* and two P atoms from triphenylphosphane ligands. In the *L* ligand, the two pyridine rings are not coplanar; the mean planes making a dihedral angle of 15.3 (5)°. In the crystal, the ions are linked by weak C-H···F interactions.

Related literature

For background to Cu^I complexes, see: Wang *et al.* (2010). For related structures, see: Engelhardt *et al.* (1985); Kirchhoff *et al.* (1985); Navarro *et al.* (2008); Peng (2010).

Experimental

Crystal data $[Cu(C_{16}H_{11}BrN_2)(C_{18}H_{15}P)_2]BF_4$ M_r = 986.07 Monoclinic, Pc a = 9.992 (1) Å b = 11.2591 (11) Å c = 20.883 (2) Å β = 98.658 (1)°

 $V = 2322.6 (4) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 1.45 \text{ mm}^{-1}$ T = 298 K $0.3 \times 0.2 \times 0.1 \text{ mm}$ $R_{\rm int} = 0.066$

11516 measured reflections

6547 independent reflections 4275 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\rm min} = 0.520, T_{\rm max} = 0.758$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.142$	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.95	$\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ \AA}^{-3}$
6547 reflections	Absolute structure: Flack (1983),
568 parameters	1482 Friedel pairs
2 restraints	Flack parameter: 0.010 (13)

Table 1

Selected geometric parameters (Å, °).

Cu1—N1	2.095 (7)	Cu1-P2	2.2648 (19)
Cu1—N2	2.178 (6)	Cu1-P1	2.276 (2)
N1-Cu1-N2	78.7 (3)	N1-Cu1-P1	107.35 (18)
N1-Cu1-P2	105.7 (2)	N2-Cu1-P1	98.60 (16)
N2-Cu1-P2	126.24 (16)	P2-Cu1-P1	128.29 (9)

Table 2Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C26—H26···F2	0.93	2.53	3.185 (12)	127
C27—H27···F3	0.93	2.48	3.356 (11)	158

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We are very grateful for financial support (LQ200812) from Hanshan Normal University for Youth Teachers.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2111).

References

Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Engelhardt, L. M., Pakawatchai, C. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 125-133.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Kirchhoff, J. R., McMillin, D. R., Robinson, W. R., Powell, D. R., McKenzie, A. T. & Chen, S. (1985). *Inorg. Chem.* 24, 3928–3933.
- Navarro, M., Corona, O. A., González, T. & Capparelli, M. V. (2008). Acta Cryst. E64, m533-m534.
- Peng, X.-L. (2010). Acta Cryst. E66, m219.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Z.-W., Cao, Q.-Y., Haung, X., Lin, S. & Gao, X.-C. (2010). Inorg. Chim. Acta, 363, 15–19.

Acta Cryst. (2011). E67, m1187 [doi:10.1107/S1600536811029515]

$[6-(4-Bromophenyl)-2,2'-bipyridine-\kappa^2N,N']$ bis(triphenylphosphane- κP)copper(I) tetrafluoridoborate

Y.-R. Lin, J.-S. Huang and M.-H. Zhong

Comment

Copper(I) complexes with diimine and phosphane ligands have attracted much attention for their rich photophysical properties and diversity coordination geometry (Engelhardt *et al.*, 1985; Kirchhoff *et al.*, 1985; Navarro *et al.*, 2008; Wang *et al.*, 2010). According to the size of diimine and phosphane ligands, these complexes can adopt three- and four-coordination modes around the metal center. Peng (2010) previously reported a three-coordinated copper(I) complex with 6-(4bromo)phenyl-2,2'-bipyridine, here we report its related four-coordinated species.

The crystal structure of the title compound is depicted in Fig. 1. The Cu¹ ion is four-coordinated in a distorted tetrahedral geometry by two N atoms from 6-(4-bromo)phenyl-2,2'-bipyridine (*L*) and two P atoms from triphenylphosphane molecules. The coordination bond angles around the Cu atom vary from 78.7 (3)° (N1—Cu1—N2) to 128.29 (9)° (P1—Cu1—P1). The two Cu—P bond distances of 2.265 (2) and 2.276 (2) Å are very similar while the Cu—N bond distance is slightly longer with the N atom of the substituted pyridine ring (2.178 (6) Å) than with the other one (2.095 (7) Å). These bond distances are within the normal ranges of related complexes (Engelhardt *et al.*, 1985; Wang *et al.*, 2010). In addition, the two pyridine rings in ligand *L* are not coplanar, the mean planes exhibit a dihedral angle of 15.3 (5) °. In the crystal, the ions are linked by weak C-H…F interactions (Table 1).

Experimental

The ligand 6-(4-bromophenyl)-2,2'-bipyridine (*L*) was prepared by a literature method (Wang *et al.*, 2010). A mixture of $[Cu(CH_3CN)_4]BF_4$ (100 mg, 0.32 mmol) and *L* (99 mg, 0.32 mmol) in dichloromethane (20 ml) was stirred under nitrogen atmosphere at room temperature for 2 h. Then triphenylphosphane (170 mg, 0.64 mmol) was added kept stirring for 2 h. The solvents were removed and the solid residue was afforded. Yellow single crystals suitable for X-ray diffraction were obtained from the solution of dichloromethane by vapor diffusion with diethyl ether (yield: 82%). Analysis calculated for $[Cu(C_{16}H_{11}N_2Br)(C_{18}H_{15}P)_2].(BF_4)$: C 63.29, H 4.19, N 2.84%; Found: C 63.38, H 4.03, 2.91%.

Refinement

All H atoms were positioned geometrically and treated as riding with C—H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level, and all hydrogen atoms are omitted for clarity.

[6-(4-Bromophenyl)-2,2'-bipyridine- $\kappa^2 N, N'$]bis(triphenylphosphane- κP)copper(I) tetrafluoridoborate

Crystal data

[Cu(C ₁₆ H ₁₁ BrN ₂)(C ₁₈ H ₁₅ P) ₂]BF ₄	F(000) = 1004
$M_r = 986.07$	$D_{\rm x} = 1.41 {\rm Mg m}^{-3}$
Monoclinic, Pc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P -2yc	Cell parameters from 548 reflections
<i>a</i> = 9.992 (1) Å	$\theta = 2.5 - 26.3^{\circ}$
b = 11.2591 (11) Å	$\mu = 1.45 \text{ mm}^{-1}$
c = 20.883 (2) Å	T = 298 K
$\beta = 98.658 \ (1)^{\circ}$	Block, yellow
$V = 2322.6 (4) \text{ Å}^3$	$0.3 \times 0.2 \times 0.1 \text{ mm}$
7 = 2	

Data collection

Bruker SMART CCD area-detector diffractometer	6547 independent reflections
Radiation source: fine-focus sealed tube	4275 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.066$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -11 \rightarrow 11$
$T_{\min} = 0.520, \ T_{\max} = 0.758$	$k = -13 \rightarrow 13$
11516 measured reflections	$l = -22 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.142$	$w = 1/[\sigma^2(F_0^2) + (0.0756P)^2]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.95	$(\Delta/\sigma)_{\text{max}} = 0.001$
6547 reflections	$\Delta \rho_{max} = 0.47 \text{ e} \text{ Å}^{-3}$
568 parameters	$\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$
2 restraints	Absolute structure: Flack (1983), 1482 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.010 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.08269 (9)	0.25186 (7)	0.57323 (5)	0.0422 (2)
Br1	-0.04461 (17)	-0.19694 (14)	0.33891 (7)	0.1352 (6)
F1	0.7674 (8)	0.7221 (7)	0.7779 (3)	0.126 (2)
F2	0.6759 (7)	0.7004 (9)	0.6758 (4)	0.148 (3)
F3	0.5916 (9)	0.6051 (8)	0.7486 (4)	0.163 (3)
F4	0.5706 (12)	0.7991 (11)	0.7398 (7)	0.241 (6)
N1	0.0407 (8)	0.3522 (6)	0.6523 (3)	0.0611 (19)
N2	-0.1375 (6)	0.2447 (5)	0.5597 (3)	0.0544 (16)
P1	0.10772 (18)	0.38136 (17)	0.49217 (9)	0.0416 (5)
P2	0.22605 (18)	0.10660 (16)	0.61565 (9)	0.0457 (5)
B1	0.6459 (17)	0.7107 (15)	0.7390 (9)	0.105 (4)
C1	0.1291 (11)	0.3954 (7)	0.7000 (4)	0.075 (3)
H1	0.2208	0.3814	0.6998	0.090*
C2	0.0894 (14)	0.4620 (9)	0.7510 (5)	0.089 (3)
H2	0.1529	0.4895	0.7849	0.107*
C3	-0.0366 (15)	0.4833 (10)	0.7491 (6)	0.095 (3)
Н3	-0.0640	0.5291	0.7818	0.114*
C4	-0.1330 (12)	0.4414 (9)	0.7008 (6)	0.092 (3)
H4	-0.2242	0.4582	0.7007	0.110*
C5	-0.0910 (10)	0.3729 (7)	0.6518 (4)	0.069 (2)
C6	-0.1862 (9)	0.3256 (7)	0.5971 (4)	0.061 (2)
C7	-0.3173 (11)	0.3699 (8)	0.5832 (6)	0.082 (3)
H7	-0.3474	0.4282	0.6091	0.099*
C8	-0.3996 (11)	0.3271 (9)	0.5315 (6)	0.088 (3)
H8	-0.4882	0.3545	0.5218	0.105*

C9	-0.3525 (9)	0.2435 (8)	0.4935 (5)	0.072 (2)
Н9	-0.4087	0.2142	0.4574	0.086*
C10	-0.2234 (9)	0.2027 (7)	0.5082 (4)	0.062 (2)
C11	-0.1732 (8)	0.1095 (7)	0.4682 (4)	0.058 (2)
C12	-0.0876 (8)	0.0190 (7)	0.4935 (4)	0.058 (2)
H12	-0.0551	0.0191	0.5377	0.070*
C13	-0.0491 (9)	-0.0706 (8)	0.4561 (4)	0.070 (2)
H13	0.0085	-0.1304	0.4744	0.084*
C14	-0.0977 (10)	-0.0706 (8)	0.3902 (5)	0.078 (3)
C15	-0.1830 (10)	0.0149 (9)	0.3641 (5)	0.079 (3)
H15	-0.2167	0.0127	0.3201	0.095*
C16	-0.2204 (9)	0.1042 (8)	0.4012 (5)	0.070 (3)
H16	-0.2785	0.1631	0.3821	0.084*
C17	0.1686 (7)	0.3258 (6)	0.4196 (4)	0.0480 (18)
C18	0.2859 (8)	0.3657 (7)	0.3995 (4)	0.060 (2)
H18	0.3323	0.4296	0.4206	0.073*
C19	0.3359 (10)	0.3115 (9)	0.3482 (5)	0.078 (3)
H19	0.4167	0.3371	0.3358	0.094*
C20	0.2633 (11)	0.2186 (9)	0.3156 (5)	0.082 (3)
H20	0.2955	0.1828	0.2808	0.098*
C21	0.1480 (10)	0.1800 (8)	0.3336 (5)	0.074 (3)
H21	0.1002	0.1177	0.3116	0.089*
C22	0 1013 (9)	0.2335(7)	0 3848 (4)	0.064(2)
H22	0.0207	0.2064	0 3968	0.077*
C23	0.2282(7)	0 4979 (6)	0.5200 (4)	0.0507 (19)
C24	0.2202(7) 0.2378(8)	0.6019(7)	0.4860(5)	0.067(2)
H24	0.1804	0.6155	0.4473	0.081*
C25	0.3355 (10)	0.6873 (7)	0.5106 (6)	0.001
H25	0.3421	0.7580	0.4883	0.094*
C26	0.4193 (9)	0.6667 (8)	0.5663 (6)	0.091(3)
H26	0.4861	0.7220	0.5808	0.097*
C27	0.4083 (8)	0.5668 (8)	0.6017 (5)	0.077(3)
H27	0.4634	0.5557	0.6412	0.075 (5)
C28	0.3135 (8)	0.4819 (7)	0.5777(4)	0.050
H28	0.3073	0.4123	0.6011	0.005 (2)
C29	-0.0478(7)	0.4661 (6)	0.4681 (4)	0.0501 (18)
C30	-0.0807(9)	0.4001(0)	0.4081(4)	0.069 (2)
H30	-0.0203	0.5555 (8)	0.5475	0.082*
C31	-0.2001(10)	0.5721	0.3475	0.082
H31	-0.2218	0.6661	0.4977 (3)	0.101*
C32	-0.2210	0.5024(10)	0.4433 (6)	0.002(3)
С32 H32	-0.3695	0.5924 (10)	0.4455 (0)	0.092 (3)
C33	-0.2508(0)	0.0301 0.5072 (10)	0.4330	0.081(3)
Н33	-0.3219	0.3072 (10)	0.4007 (3)	0.007*
C34	-0.1374(8)	0.4230 (7)	0.3041	0.097
U34	-0.1166	0.4439(7)	0.4110 (4)	0.002 (2)
C35	-0.1100	0.3004	0.5010	0.073
C35	0.3299 (9)	0.1330(7)	0.0912(4)	0.007(3)
C30	0.4595 (11)	0.2200 (8)	0.0091 (3)	0.088 (3)
1130	0.4399	0.248/	0.0488	0.100*

C37	0.5204 (15)	0.2660 (11)	0.7434 (7)	0.129 (5)
H37	0.6021	0.3044	0.7414	0.155*
C38	0.4735 (17)	0.2462 (12)	0.8019 (7)	0.140 (6)
H38	0.5212	0.2781	0.8397	0.169*
C39	0.3608 (15)	0.1820 (11)	0.8054 (6)	0.127 (5)
H39	0.3320	0.1702	0.8453	0.153*
C40	0.2885 (11)	0.1339 (9)	0.7502 (5)	0.091 (3)
H40	0.2119	0.0883	0.7527	0.109*
C41	0.3475 (7)	0.0474 (6)	0.5679 (4)	0.0516 (19)
C42	0.3197 (8)	0.0550 (7)	0.5007 (4)	0.060 (2)
H42	0.2400	0.0910	0.4813	0.073*
C43	0.4085 (10)	0.0098 (7)	0.4627 (5)	0.068 (2)
H43	0.3860	0.0145	0.4179	0.082*
C44	0.5269 (10)	-0.0411 (7)	0.4878 (6)	0.076 (3)
H44	0.5856	-0.0712	0.4613	0.091*
C45	0.5581 (9)	-0.0468 (7)	0.5546 (6)	0.073 (3)
H45	0.6398	-0.0808	0.5729	0.088*
C46	0.4728 (8)	-0.0043 (7)	0.5942 (5)	0.064 (2)
H46	0.4970	-0.0092	0.6389	0.077*
C47	0.1366 (8)	-0.0228 (6)	0.6396 (3)	0.0494 (19)
C48	0.0138 (9)	-0.0083 (7)	0.6623 (4)	0.060 (2)
H48	-0.0175	0.0682	0.6681	0.072*
C49	-0.0630 (9)	-0.1035 (8)	0.6764 (4)	0.068 (2)
H49	-0.1451	-0.0923	0.6914	0.081*
C50	-0.0145 (10)	-0.2154 (8)	0.6676 (5)	0.074 (3)
H50	-0.0654	-0.2807	0.6767	0.089*
C51	0.1040 (10)	-0.2334 (7)	0.6464 (5)	0.070 (2)
H51	0.1343	-0.3105	0.6416	0.084*
C52	0.1816 (8)	-0.1381 (6)	0.6316 (4)	0.059 (2)
H52	0.2633	-0.1512	0.6164	0.070*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0501 (4)	0.0413 (4)	0.0362 (4)	0.0021 (4)	0.0101 (3)	0.0013 (4)
Br1	0.2025 (16)	0.1209 (10)	0.0880 (9)	-0.0089 (10)	0.0405 (9)	-0.0422 (9)
F1	0.134 (6)	0.156 (6)	0.082 (5)	-0.016 (4)	-0.004 (4)	-0.012 (4)
F2	0.112 (5)	0.251 (9)	0.082 (5)	-0.064 (5)	0.017 (4)	-0.012 (5)
F3	0.167 (7)	0.177 (8)	0.141 (7)	-0.058 (6)	0.011 (6)	0.019 (6)
F4	0.208 (12)	0.225 (12)	0.288 (16)	0.094 (10)	0.034 (10)	0.002 (11)
N1	0.087 (6)	0.060 (4)	0.040 (4)	0.007 (4)	0.021 (4)	0.003 (3)
N2	0.064 (4)	0.047 (3)	0.056 (4)	0.001 (3)	0.023 (3)	0.011 (3)
P1	0.0442 (11)	0.0412 (9)	0.0391 (11)	-0.0030 (8)	0.0052 (8)	0.0051 (9)
P2	0.0494 (11)	0.0442 (10)	0.0426 (11)	-0.0022 (9)	0.0043 (8)	0.0082 (9)
B1	0.092 (11)	0.111 (11)	0.114 (13)	-0.031 (9)	0.022 (10)	-0.005 (9)
C1	0.105 (7)	0.069 (5)	0.054 (6)	-0.001 (5)	0.020 (5)	-0.010 (5)
C2	0.136 (10)	0.073 (6)	0.062 (7)	-0.006 (7)	0.025 (7)	-0.013 (5)
C3	0.139 (11)	0.085 (7)	0.074 (8)	-0.007 (8)	0.054 (8)	-0.009 (6)

C4	0.109 (8)	0.086 (7)	0.091 (8)	-0.003 (6)	0.051 (7)	-0.005 (7)
C5	0.089 (7)	0.057 (5)	0.069 (6)	0.005 (5)	0.039 (5)	0.009 (5)
C6	0.064 (6)	0.055 (5)	0.071 (6)	0.007 (4)	0.034 (5)	0.013 (5)
C7	0.086 (8)	0.075 (6)	0.096 (8)	0.020 (6)	0.045 (6)	0.011 (6)
C8	0.071 (6)	0.089 (7)	0.108 (9)	0.013 (6)	0.030 (6)	0.018 (7)
C9	0.061 (6)	0.073 (6)	0.084 (7)	0.003 (5)	0.017 (5)	0.014 (5)
C10	0.060 (6)	0.056 (4)	0.070 (6)	-0.005 (4)	0.014 (5)	0.022 (5)
C11	0.057 (5)	0.063 (5)	0.055 (5)	-0.011 (4)	0.007 (4)	0.004 (4)
C12	0.065 (5)	0.059 (5)	0.050 (5)	-0.007 (4)	0.005 (4)	0.002 (4)
C13	0.084 (6)	0.068 (5)	0.058 (6)	0.002 (5)	0.009 (5)	-0.011 (5)
C14	0.091 (7)	0.072 (6)	0.072 (7)	-0.022 (5)	0.015 (5)	-0.004 (5)
C15	0.096 (8)	0.085 (7)	0.053 (6)	-0.027 (6)	0.002 (5)	0.000 (6)
C16	0.069 (6)	0.073 (6)	0.066 (6)	-0.016 (5)	0.004 (5)	0.018 (5)
C17	0.051 (4)	0.050 (4)	0.045 (4)	-0.008 (4)	0.011 (3)	0.007 (4)
C18	0.051 (5)	0.071 (5)	0.061 (5)	-0.003 (4)	0.016 (4)	0.004 (4)
C19	0.068 (6)	0.102 (7)	0.071 (7)	0.000 (6)	0.032 (5)	0.009 (6)
C20	0.090 (8)	0.101 (8)	0.060 (6)	0.009 (6)	0.028 (5)	-0.011 (6)
C21	0.078 (7)	0.086 (6)	0.062 (6)	-0.012 (5)	0.021 (5)	-0.017 (5)
C22	0.059 (5)	0.075 (5)	0.061 (5)	-0.007 (4)	0.018 (4)	-0.004 (5)
C23	0.049 (5)	0.043 (4)	0.062 (5)	0.003 (3)	0.017 (4)	0.007 (4)
C24	0.064 (6)	0.057 (5)	0.081 (6)	-0.008 (4)	0.015 (5)	0.004 (5)
C25	0.081 (7)	0.050 (5)	0.108 (8)	-0.010 (5)	0.028 (6)	0.004 (5)
C26	0.064 (6)	0.061 (6)	0.115 (9)	-0.013 (5)	0.008 (6)	-0.017 (6)
C27	0.060 (5)	0.063 (5)	0.096 (7)	0.000 (4)	-0.010 (5)	-0.019 (5)
C28	0.058 (5)	0.055 (5)	0.073 (6)	0.000 (4)	0.003 (4)	-0.010 (4)
C29	0.055 (5)	0.048 (4)	0.048 (5)	-0.003 (4)	0.012 (4)	0.012 (4)
C30	0.069 (6)	0.074 (6)	0.064 (6)	0.011 (5)	0.014 (5)	0.010 (5)
C31	0.083 (7)	0.092 (7)	0.081 (7)	0.025 (6)	0.018 (6)	0.012 (6)
C32	0.075 (7)	0.098 (8)	0.101 (9)	0.026 (6)	0.007 (7)	0.022 (7)
C33	0.060 (6)	0.105 (8)	0.074 (7)	0.004 (5)	0.004 (5)	0.029 (6)
C34	0.058 (5)	0.068 (5)	0.059 (6)	0.003 (4)	0.005 (4)	0.023 (4)
C35	0.074 (6)	0.068 (5)	0.053 (6)	-0.024 (5)	-0.009 (5)	0.008 (4)
C36	0.099 (8)	0.090 (7)	0.069 (7)	-0.036 (6)	-0.007 (6)	0.009 (5)
C37	0.145 (12)	0.140 (10)	0.092 (10)	-0.076 (9)	-0.018 (9)	-0.001 (8)
C38	0.170 (14)	0.156 (12)	0.080 (10)	-0.072 (11)	-0.033 (10)	-0.002 (9)
C39	0.161 (12)	0.146 (10)	0.063 (7)	-0.065 (10)	-0.021 (8)	0.015 (7)
C40	0.119 (8)	0.093 (7)	0.054 (6)	-0.043 (6)	-0.007 (6)	0.009 (6)
C41	0.043 (4)	0.050 (4)	0.061 (5)	-0.010 (3)	0.008 (4)	0.009 (4)
C42	0.055 (5)	0.056 (5)	0.072 (6)	0.001 (4)	0.014 (4)	0.008 (4)
C43	0.077 (7)	0.058 (5)	0.077 (6)	-0.006 (5)	0.036 (5)	-0.003 (5)
C44	0.071 (7)	0.059 (5)	0.108 (9)	-0.009 (5)	0.050 (6)	-0.008 (6)
C45	0.047 (6)	0.058 (5)	0.116 (10)	-0.001 (4)	0.018 (6)	0.008 (5)
C46	0.056 (5)	0.054 (4)	0.081 (6)	-0.006 (4)	0.007 (5)	0.010 (4)
C47	0.054 (5)	0.053 (4)	0.041 (4)	-0.012 (4)	0.003 (4)	0.006 (3)
C48	0.067 (6)	0.061 (5)	0.052 (5)	0.002 (4)	0.005 (4)	0.014 (4)
C49	0.064 (6)	0.082 (6)	0.061 (6)	-0.010 (5)	0.020 (4)	0.017 (5)
C50	0.083 (7)	0.075 (6)	0.067 (6)	-0.031 (5)	0.017 (5)	0.013 (5)
C51	0.081 (7)	0.054 (5)	0.077 (6)	-0.018 (5)	0.015 (5)	0.000 (4)
C52	0.060 (5)	0.056 (5)	0.061 (5)	-0.008 (4)	0.013 (4)	0.005 (4)

Geometric parameters (Å, °)

Cu1—N1	2.095 (7)	С22—Н22	0.9300
Cu1—N2	2.178 (6)	C23—C28	1.379 (10)
Cu1—P2	2.2648 (19)	C23—C24	1.381 (10)
Cu1—P1	2.276 (2)	C24—C25	1.412 (12)
Br1—C14	1.904 (10)	C24—H24	0.9300
F1—B1	1.361 (16)	C25—C26	1.347 (13)
F2—B1	1.402 (18)	С25—Н25	0.9300
F3—B1	1.334 (16)	C26—C27	1.359 (13)
F4—B1	1.250 (18)	С26—Н26	0.9300
N1—C1	1.320 (10)	C27—C28	1.386 (11)
N1—C5	1.335 (11)	С27—Н27	0.9300
N2—C6	1.338 (10)	C28—H28	0.9300
N2—C10	1.356 (10)	C29—C34	1.392 (10)
P1—C23	1.816 (7)	C29—C30	1.395 (11)
P1—C17	1.825 (8)	C30—C31	1.348 (12)
P1—C29	1.828 (7)	С30—Н30	0.9300
P2—C41	1.810 (8)	C31—C32	1.353 (14)
P2—C47	1.817 (7)	С31—Н31	0.9300
P2—C35	1.832 (8)	C32—C33	1.370 (14)
C1—C2	1.407 (13)	С32—Н32	0.9300
C1—H1	0.9300	C33—C34	1.404 (12)
C2—C3	1.277 (14)	С33—Н33	0.9300
С2—Н2	0.9300	С34—Н34	0.9300
C3—C4	1.369 (15)	C35—C36	1.370 (12)
С3—Н3	0.9300	C35—C40	1.375 (13)
C4—C5	1.396 (13)	C36—C37	1.367 (14)
C4—H4	0.9300	С36—Н36	0.9300
C5—C6	1.472 (12)	C37—C38	1.39 (2)
C6—C7	1.391 (12)	С37—Н37	0.9300
С7—С8	1.343 (14)	C38—C39	1.350 (18)
С7—Н7	0.9300	C38—H38	0.9300
C8—C9	1.360 (14)	C39—C40	1.377 (13)
С8—Н8	0.9300	С39—Н39	0.9300
C9—C10	1.361 (12)	C40—H40	0.9300
С9—Н9	0.9300	C41—C42	1.390 (11)
C10—C11	1.476 (12)	C41—C46	1.415 (10)
C11—C12	1.383 (11)	C42—C43	1.374 (12)
C11—C16	1.408 (12)	C42—H42	0.9300
C12—C13	1.366 (11)	C43—C44	1.348 (12)
C12—H12	0.9300	C43—H43	0.9300
C13—C14	1.388 (12)	C44—C45	1.383 (13)
С13—Н13	0.9300	C44—H44	0.9300
C14—C15	1.346 (12)	C45—C46	1.362 (13)
C15—C16	1.357 (13)	C45—H45	0.9300
C15—H15	0.9300	C46—H46	0.9300
C16—H16	0.9300	C47—C48	1.391 (11)

C17—C18	1.379 (11)	C47—C52	1.393 (11)
C17—C22	1.384 (10)	C48—C49	1.375 (11)
C18—C19	1.390 (12)	C48—H48	0.9300
C18—H18	0.9300	C49—C50	1.372 (12)
C19—C20	1.390 (13)	С49—Н49	0.9300
С19—Н19	0.9300	C50—C51	1.341 (13)
C20—C21	1.337 (13)	С50—Н50	0.9300
С20—Н20	0.9300	C51—C52	1.386 (11)
C21—C22	1.370 (12)	С51—Н51	0.9300
C21—H21	0.9300	С52—Н52	0.9300
N1—Cu1—N2	78.7 (3)	C21—C22—C17	123.0 (8)
N1—Cu1—P2	105.7 (2)	C21—C22—H22	118.5
N2—Cu1—P2	126.24 (16)	С17—С22—Н22	118.5
N1—Cu1—P1	107.35 (18)	C28—C23—C24	118.7 (7)
N2—Cu1—P1	98.60 (16)	C28—C23—P1	118.6 (6)
P2—Cu1—P1	128.29 (9)	C24—C23—P1	122.8 (6)
C1—N1—C5	119.2 (8)	C23—C24—C25	119.2 (8)
C1—N1—Cu1	127.1 (7)	C23—C24—H24	120.4
C5—N1—Cu1	113.7 (6)	C25—C24—H24	120.4
C6—N2—C10	117.3 (7)	C26—C25—C24	120.2 (9)
C6—N2—Cu1	110.4 (5)	С26—С25—Н25	119.9
C10—N2—Cu1	128.5 (6)	С24—С25—Н25	119.9
C23—P1—C17	103.0 (4)	C25—C26—C27	121.4 (9)
C23—P1—C29	101.9 (3)	С25—С26—Н26	119.3
C17—P1—C29	109.0 (3)	C27—C26—H26	119.3
C23—P1—Cu1	111.5 (3)	C26—C27—C28	118.8 (9)
C17—P1—Cu1	119.0 (2)	С26—С27—Н27	120.6
C29—P1—Cu1	110.8 (2)	C28—C27—H27	120.6
C41—P2—C47	104.7 (4)	C23—C28—C27	121.6 (8)
C41—P2—C35	104.0 (4)	С23—С28—Н28	119.2
C47—P2—C35	103.5 (4)	С27—С28—Н28	119.2
C41—P2—Cu1	119.2 (3)	C34—C29—C30	118.7 (7)
C47—P2—Cu1	112.2 (3)	C34—C29—P1	123.4 (6)
C35—P2—Cu1	111.7 (3)	C30—C29—P1	117.7 (6)
F4—B1—F3	116.7 (15)	C31—C30—C29	120.0 (9)
F4—B1—F1	113.7 (14)	С31—С30—Н30	120.0
F3—B1—F1	110.0 (14)	С29—С30—Н30	120.0
F4—B1—F2	107.0 (15)	C30—C31—C32	123.2 (10)
F3—B1—F2	102.5 (13)	C30—C31—H31	118.4
F1—B1—F2	105.7 (12)	С32—С31—Н31	118.4
N1—C1—C2	122.3 (10)	C31—C32—C33	118.0 (9)
N1—C1—H1	118.8	С31—С32—Н32	121.0
C2—C1—H1	118.8	С33—С32—Н32	121.0
C3—C2—C1	117.8 (11)	C32—C33—C34	121.5 (9)
С3—С2—Н2	121.1	С32—С33—Н33	119.2
С1—С2—Н2	121.1	С34—С33—Н33	119.2
C2—C3—C4	122.6 (11)	C29—C34—C33	118.5 (9)
С2—С3—Н3	118.7	С29—С34—Н34	120.7
С4—С3—Н3	118.7	C33—C34—H34	120.7

C3—C4—C5	118.3 (11)	C36—C35—C40	118.4 (8)
C3—C4—H4	120.8	C36—C35—P2	119.7 (8)
С5—С4—Н4	120.8	C40—C35—P2	121.1 (7)
N1—C5—C4	119.7 (9)	C37—C36—C35	123.0 (12)
N1—C5—C6	117.7 (8)	С37—С36—Н36	118.5
C4—C5—C6	122.5 (10)	С35—С36—Н36	118.5
N2—C6—C7	122.4 (9)	C36—C37—C38	116.2 (12)
N2—C6—C5	116.7 (8)	С36—С37—Н37	121.9
C7—C6—C5	120.7 (9)	С38—С37—Н37	121.9
C8—C7—C6	118.9 (10)	C39—C38—C37	121.9 (11)
С8—С7—Н7	120.6	С39—С38—Н38	119.0
С6—С7—Н7	120.6	С37—С38—Н38	119.0
C7—C8—C9	119.5 (10)	C38—C39—C40	120.1 (13)
С7—С8—Н8	120.2	С38—С39—Н39	120.0
С9—С8—Н8	120.2	С40—С39—Н39	120.0
C8—C9—C10	120.1 (10)	C35—C40—C39	119.7 (10)
С8—С9—Н9	119.9	С35—С40—Н40	120.1
С10—С9—Н9	119.9	С39—С40—Н40	120.1
N2—C10—C9	121.8 (9)	C42—C41—C46	116.7 (8)
N2-C10-C11	117.9 (7)	C42—C41—P2	119.0 (6)
C9—C10—C11	120.3 (9)	C46—C41—P2	124.3 (7)
C12—C11—C16	116.4 (8)	C43—C42—C41	120.8 (8)
C12-C11-C10	123.4 (8)	C43—C42—H42	119.6
C16—C11—C10	120.0 (8)	C41—C42—H42	119.6
C13—C12—C11	122.4 (8)	C44—C43—C42	122.5 (10)
C13—C12—H12	118.8	C44—C43—H43	118.7
C11—C12—H12	118.8	C42—C43—H43	118.7
C12—C13—C14	118.7 (8)	C43—C44—C45	117.6 (9)
С12—С13—Н13	120.6	C43—C44—H44	121.2
C14—C13—H13	120.6	C45—C44—H44	121.2
C15—C14—C13	120.5 (9)	C46—C45—C44	122.0 (8)
C15-C14-Br1	121.3 (8)	C46—C45—H45	119.0
C13-C14-Br1	118.2 (8)	C44—C45—H45	119.0
C14—C15—C16	120.7 (9)	C45—C46—C41	120.4 (9)
C14—C15—H15	119.6	C45—C46—H46	119.8
С16—С15—Н15	119.6	C41—C46—H46	119.8
C15-C16-C11	121.3 (9)	C48—C47—C52	117.9 (7)
C15-C16-H16	119.4	C48—C47—P2	119.7 (6)
С11—С16—Н16	119.4	C52—C47—P2	122.3 (6)
C18—C17—C22	116.9 (8)	C49—C48—C47	122.1 (8)
C18—C17—P1	123.1 (6)	C49—C48—H48	119.0
C22—C17—P1	119.8 (6)	C47—C48—H48	119.0
C17—C18—C19	120.9 (8)	C50—C49—C48	117.9 (8)
C17—C18—H18	119.6	С50—С49—Н49	121.0
C19—C18—H18	119.6	C48—C49—H49	121.0
C18—C19—C20	119.1 (9)	C51—C50—C49	122.0 (8)
C18—C19—H19	120.5	С51—С50—Н50	119.0
C20—C19—H19	120.5	С49—С50—Н50	119.0
C21—C20—C19	121.0 (10)	C50—C51—C52	120.6 (9)

С21—С20—Н20	119.5	C50—C51—H51	119.7
C19—C20—H20	119.5	C52—C51—H51	119.7
C20—C21—C22	119.0 (9)	C51—C52—C47	119.6 (9)
C20—C21—H21	120.5	С51—С52—Н52	120.2
C22—C21—H21	120.5	С47—С52—Н52	120.2

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
C26—H26…F2	0.93	2.53	3.185 (12)	127.
C27—H27…F3	0.93	2.48	3.356 (11)	158.

